
On the complexity of various Lights Out
variants

Daan van Berkel
Wieb Bosma

February 2, 2024

Abstract

We explore the complexity of various Lights Out variants.

1 Introduction

We will report on the complexity of solving various variants of Lights Out.

In general there are two problems

• Existance does a solution for the specific instance of a Lights Out prob-
lem exist.

• Solution what is a solution for the specific instance of a Lights Out
problem, if it exists.

Each section will focus on a different class of problems.

2 Standard Lights out

Theorem 1 The existance and the solution problem for standar lights out
are in P . ⋄

Proof (TODO refer to standard result?) both problems use solving a linear
set of equations over a suitable ring, which is polynomial. □

1

3 Nice Graphs

We call a graph G := (V,E) nice if and only if it has the following properties

1. reflexive there is an self-edge for each vertex of G

2. symmetric if (u, v) ∈ E then also (v, u) ∈ E

3. equal weight Each edge has the same weight.

Without the loss of generality, for nice graphs we can set the weights to
1.

Proof (TODO talk about equivalent problems) There is an equivalent prob-
lem with weights 1 for each nice graph. □

Lemma 2 Given a nice graph G, and an instance L to the standard problem
on G with a solution S.

For every lit button b ∈ L there is a button s ∈ S within d(b, s) ≤ 1. ⋄

Proof Assume the contrary. I.e. All buttons in the solution have a distance
greater then 1 to all lit buttons of L. Since the effect of pressing a
button has reach 1, no lit button in L will change when pressing any
s ∈ S. Contrary to S being a solution. □

Remark Something more general is true. G does not have to be a nice
graph. ◁

Lemma 3 Given a nice graph G

A solution to the restricted problem on G exists if and only if a solution
to the standard problem exists. ⋄

Proof ⇐= A solution to the restricted problem is also a solution to the
standard problem.

=⇒ We will use induction on the length of a solution to show that
a solution S to the standard problem on G can be transformed to a
solution S ′ to the restricted problem on G.

Assume all solution S to the standard problem on G with |S| < k can
be transformed to solution to the restricted problem. We will show
that a solution S with |S| = k can also be transformed. Let S with
|S| = k be given. There are two situations to consider.

2

1. S contains a lit button.

2. S does not contain a lit button.

Without loss of generality, if we are in situation 1, we assume that the
first button in S we press is lit, since we can freely reorder the sequence
of button presses in a solution for the standard problem. Since this
button is lit we can press it. The remaining solution for the standard
problem can be transformed to a solution to the restricted problem by
the induction hypotheses.

In situation 2 we can apply lemma 2. Pick a lit button b and choose
button s ∈ S with d(b, s) = 1. Without loss of generality we can assume
that s is the first button in S. The following alternate press sequence
allows us to press s without altering the resulting light pattern. Assume
υ(b) = k.

1. press button b exactly q − k times. Since G is reflexive b is now
unlit. Since d(b, s) = 1 we find s in state υ(s) = q−k and therefor
lit.

2. press button s which is possible because s is lit. Since G is sym-
metric s effects b, so b becomes lit.

3. press button b exactly k times.

Notice that this is a valid press sequence in the restricted problem.
Furthermore button b is pressed q times, so it has not effected the
resulting light pattern. More importantly the above sequence presses
s.

The remaining solution for the standard problem can again be trans-
formed to a solution to the restricted problem by the induction hy-
potheses.

So by induction we have shown that any solution to the standard prob-
lem on G can be transformed to a solution to the restricted probem on
G. □

Corollary 4 Let S be a solution to the standard problem and S ′ the corre-
sponding solution to the retricted problem.

Then |S ′| ≤ (q + 1)|S|. ⋄

Proof In the worst-case scenario we need to transform every s ∈ S by our
alternate press sequence. In each such transform we press q+1 buttons.

□

3

image/not-reflexive.dot.pdf

(a) Not reflexive

image/not-symmetric.dot.pdf

(b) Not Symmetric

image/c.dot.pdf

(c) Not same Weight

Figure 1: Counter examples

Theorem 5 For a nice graph G we have

The existance and solution problems for the restricted Lights Out vari-
ant are in P . ⋄

Proof By lemma 3 there exist a solution to the restricted problem if and
only if there exists a solution to the standard problem. By theorem 1
the existance of a solution for the standard problem is in P .

The result for the restricted solution problem follows from theorem 1
a solutions to the standard problem can be found in polynomial time.
By lemma 3 and corollary 4 it can be transformed in polynomial time
to a solution for the restricted problem. □

In general, when our graph is not nice we loose the property that the
solutions to the lit problem are equivalent to the standard problem.

Remark For the not reflexive counter example we have an υ(a) = 0 and
υ(b) = 1. A standard solution is to press a, which can be achieved in
lit problem. Pressing the only lit button results in υ(a) = 1, pressing
any button in this state transforms back to the original or similar state.

For the not symmetric case with only υ(b) = 1 and the rest is off, we
have a solution by pressing c, d, e, a. Since neither of c, d, or e is lit, and
will never be lit this solution can not be transfered from the standard
problem to the lit problem. ◁

4 restricted

Theorem 6 The existance and solution problems for restricted lights out is
NP-hard. ⋄

4

image/a.dot.pdf

(a) clock

image/b.dot.pdf

(b) register

image/c.dot.pdf

(c) carry

Figure 2: twilight constructs

Proof (TODO expand proof) reduce SAT to restricted lights out. □

5 twilight

Theorem 7 the solution problem is not in NP. ⋄

Take a look at figure 5. It displays various constructs used in the proof
of theorem 7.

Construct 5 is called a clock. It has two vertices, which are both in the
active state. The top vertex can be used to kill the clock. Pressing it will
change the state of the clock vertices to 0, which is an inactive state. The
bottom vertex of the clock construct will send a signal through the output
edge. This signal can be used to increment the vertex that will be connected
to it.

Construct 5 of figure ?? is called a register. It consist of a sole vertex
connected to the input and output. Initially this vertex is in the state 0.
It takes at least q − 1 input signals before the register construct can pass a
signal to its output.

The last construct, 5 is called a carry. It is a sole vertex connected to the
input. Initially the carry vertex is in state 1. Since it is only influenced by
the input, it needs q − 1 input signals before it is turned off.

With these constructs we will define a family of problems (Pn)
∞
n=0. To

define our family we introduce a little notation. a will denote a clock con-
struct, b denotes a register and c denotes a carry. Concatenation uv of verbs
u and v means to connect the output of u to the input of v. Exponentiation
will be interpreted as iterated concatenation.

With these conventions it is easy to describe our family: Pn := abnc. In
figure 3 you see a depiction of P3.

5

image/p3.dot.pdf

Figure 3: Problem P3

The crux of the proof of theorem 7 can be found in the following lemma.

Lemma 8 For construct bn there need to be at least

(q − 1)n+1 − 1

q − 2

presses before an output signal occurs. ⋄

Proof We will prove this with induction on the size of the construct. Notice
that for n = 0 the input is directly coupled to the output so each input
signal corresponds to one output signal, in accordance with lemma.

Take a look at construct b. Each input signal changes the state of the
vertex from i 7→ i + 1. In order for the vertex to reach state q − 1 we
need at least q − 1 input signals. Before an output signal is send the
vertex of b should be pressed. This sets the least amount of presses to

send an output signal to (q − 1) + 1 which equals (q−1)2−1
q−2

.

Now assume that construct bk needs at least (q−1)k+1−1
q−2

input signals

before an output signal occurs. We will show that the construct bk+1

will need at least (q−1)k+1−1
q−2

input signal.

Since bk+1 = bkb and we know that b needs q− 1 input signals to reach
state q − 1 before we can press its vertex to produce an output signal,
we have for the least amount of presses for bk+1

(
(q − 1)k+1 − 1

q − 2

)
(q−1)+1 =

(q − 1)k+2 − (q − 1)

q − 2
+
q − 2

q − 2
=

(q − 1)k+2 − 1

q − 2

Proving our lemma. □

The crux can be used in the following theorem

Theorem 9 The problem Pn needs (q−1)n+2−1
q−2

presses to solve. ⋄

6

Proof Note that Pn = abnc. c needs (q − 1) input signals to transistion
from 1 to 0. These need to be delivered by bn, which by the preceding

lemma, needs at least (q−1)n+1−1
q−2

presses. Afterwards we need to kill the
clock which can be achieved with one press of the kill switch.

So the least number of presses to solve Pn is (q−1)n+1−1
q−2

(q − 1) + 1 =
(q−1)n+2−1

q−2
. □

The proof of theorem 7 is a consequence

Proof |Pn| = |abnc| = |a| + |bn| + |c| = 2 + n + 1 = n + 3. By the preced-
ing family the solution length is not bounded by a polynomial in the
number of vertices. □

7

	Introduction
	Standard Lights out
	Nice Graphs
	restricted
	twilight

